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A B S T R A C T

Mild cognitive impairment (MCI) is widely regarded as an intermediate stage between typical aging and de-
mentia, with nearly 50% of patients with amnestic MCI (aMCI) converting to Alzheimer's dementia (AD) within
30months of follow-up (Fischer et al., 2007). The growing literature using resting-state functional magnetic
resonance imaging reveals both increased and decreased connectivity in individuals with MCI and connectivity
loss between the anterior and posterior components of the default mode network (DMN) throughout the course
of the disease progression (Hillary et al., 2015; Sheline & Raichle, 2013; Tijms et al., 2013). In this paper, we use
dynamic connectivity modeling and graph theory to identify unique brain “states,” or temporal patterns of
connectivity across distributed networks, to distinguish individuals with aMCI from healthy older adults (HOAs).
We enrolled 44 individuals diagnosed with aMCI and 33 HOAs of comparable age and education. Our results
indicated that individuals with aMCI spent significantly more time in one state in particular, whereas neural
network analysis in the HOA sample revealed approximately equivalent representation across four distinct
states. Among individuals with aMCI, spending a higher proportion of time in the dominant state relative to a
state where participants exhibited high cost (a measure combining connectivity and distance), predicted better
language performance and less perseveration. This is the first report to examine neural network dynamics in
individuals with aMCI.

1. Background

Mild cognitive impairment (MCI) is widely regarded as an inter-
mediate stage between typical aging and dementia, with about 30% of
MCI patients converting to Alzheimer's dementia (AD) and nearly 50%
of individuals with amnestic MCI (aMCI) converting to AD within a 30-
month follow-up period (Fischer et al., 2007). Patients with aMCI are
characterized by impairments in learning and memory, though addi-
tional cognitive deficits are often evident depending on when an in-
dividual presents clinically (Albert et al., 2011).

Resting-state functional magnetic resonance imaging (rs-fMRI) ex-
amines coherent oscillations of low frequency fluctuations in the blood
oxygen level-dependent (BOLD) signal, thereby allowing for the

identification of sets of regions whose activity is correlated when an
individual is not engaging in any particular task (Biswal et al., 1995;
Gusnard and Raichle, 2001). Using this method, there is now a large
literature demonstrating a gradual loss of connectivity between anterior
and posterior brain regions in AD, but this disconnection may be pre-
ceded by a mix of increased and decreased connectivity in individuals
with MCI (Badhwar et al., 2017; Hillary et al., 2015; Sheline and
Raichle, 2013; Tijms et al., 2013). Specifically, early disease states may
result in hyperconnectivity in areas of the default mode network (DMN)
(Hillary et al., 2015), a group of brain regions including the posterior
cingulate cortex and the ventromedial prefrontal cortex that is believed
to be involved in self-referential thought and memory processing
(Raichle et al., 2001; Raichle, 2015). Other disruptions in connectivity
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within the hippocampus (Jones et al., 2016), posterior cingulate cortex
(Brier et al., 2012), and medial temporal lobes (Dickerson and Sperling,
2008) have been associated with reduced memory performance. Fur-
thermore, hubs in the cognitive control (CC) network, which includes
the anterior cingulate cortex, dorsolateral prefrontal cortex, and pos-
terior parietal cortex (Cole and Schneider, 2007), have shown increases
in connectivity in individuals with AD when compared to healthy
controls (Agosta et al., 2012; Hillary et al., 2015). Disease onset
therefore presents as hyperconnectivity that degrades as the disease
develops, cascading from posterior to anterior connectivity degradation
(Damoiseaux et al., 2012; Hillary and Grafman, 2017; Jones et al.,
2016).

In order to characterize distributed neural networks, investigators
have combined rs-fMRI methods with graph theory, an applied math-
ematical approach permitting analysis of all possible connections across
the network (Bassett and Bullmore, 2006). Recent application of graph
theory methods in the study of aMCI has revealed an overall decrease in
connectivity, which is commonly observed as an overall increase of
average path length, or a decrease in the global efficiency of the net-
work (Wang et al., 2013). Wang and colleagues also observed that
participants with aMCI exhibited decreased modularity, a community
structure metric characterized by groups of nodes densely linked among
themselves and more sparsely linked to nodes outside the local
grouping. Two related dimensions of network functioning may be af-
fected in aMCI. First, there is a nonlinear trend in connectivity change,
with enhanced connectivity early on in the disease giving way to con-
nectivity loss based upon the degree of cortical atrophy (de Haan et al.,
2009). Second, information processing via network hubs declines as
connectivity is lost and modularity, or “community structure,” degrades
(for review see Hillary and Grafman, 2017).

To date, network studies in MCI, including those using graph theory,
have investigated neural networks by quantifying the relationship (e.g.,
a single correlation coefficient) between any two nodes for the entire
data collection period. This method assumes temporal and spatial sta-
tionarity in the relationship between network nodes over the course of
the time series. New approaches such as dynamic connectivity, which
have been applied to other clinical populations such as mild traumatic
brain injury (TBI) (Mayer et al., 2015) and schizophrenia (Braun et al.,
2016; Rashid et al., 2014), allow for increased sensitivity to subtle
temporal variations that can be missed when correlating two time
series. A relatively new method examining dynamic functional con-
nectivity works by identifying brain states that neural networks tran-
sition through during resting state in the absence of any externally
imposed task. In this paper, we examine dynamic functional con-
nectivity by studying smaller windows of time to gain access to these
brain states. We seek to understand the different resting-state profiles of
individuals with aMCI compared to healthy older adults (HOAs), with a
focus on network dynamics and flexibility as neural systems move be-
tween distinct connectivity states. To our knowledge, no other study
has examined dynamic connectivity in individuals with aMCI.

1.1. Study goals and hypotheses

The goal of this paper is to compare dynamic functional con-
nectivity brain states during rest between individuals with aMCI and

HOAs. We focus on proportion of time spent in distinct brain states as
well as transitions between distinct states based upon a dynamic
functional connectivity analysis.

Overall, we hypothesized that compared to HOAs, individuals with
aMCI will show network dynamics marked by fewer transitions be-
tween states and state attendance that is concentrated more heavily on
one state instead of spread out across many. This hypothesis is based on
previous literature demonstrating that diminished network variability
has been observed after traumatic brain injury (TBI) (Nenadovic et al.,
2008) where there exists challenges to neural network resources.
Second, we predicted that hub regions within the DMN and CC network
would function as “drivers” for the proportion of time spent in the most
common state in the aMCI sample. Finally, given the above noted evi-
dence of a posterior to anterior loss of long-distance connectivity in
MCI, we predicted that diminished connectivity in posterior hubs in the
aMCI sample would predict cognitive deficit (Brier et al., 2012; Dennis
and Thompson, 2014; Li et al., 2013; Sorg et al., 2007).

2. Materials and methods

2.1. Procedure

Subjects included 44 individuals diagnosed with aMCI and 33 HOAs
of comparable age and education (Table 1). Subjects with aMCI were
recruited from the Atlanta Veterans Affairs Medical Center (VAMC) as
well as the Emory University Alzheimer's Disease Research Center
(ADRC). Those with aMCI were diagnosed according to the Petersen
criteria (Petersen, 2004) via consensus conferences that included neu-
rologists, geriatricians, neuropsychologists, and other clinical staff, who
took into account laboratory results, neuroimaging, neuropsycholo-
gical, and other test results as available. HOA participants were re-
cruited from the Emory ADRC as well as the general Atlanta me-
tropolitan area. These participants were determined to have normal
cognition using the same consensus approach. General exclusion cri-
teria included any other neurologic injury or disease, psychiatric dis-
orders, and current or past alcohol or drug abuse or dependence. All of
the data were collected at Emory University, and all participants gave
written, informed consent. The study was approved by the Institutional
Review Board of Emory University and the Research and Development
Committee of the Atlanta VAMC.

2.2. Behavioral data

Given the time lag that can occur between diagnosis and study
enrollment, all participants completed a standard neuropsychological
protocol, described below, at the time of study enrollment. This ensured
that patients with aMCI did not convert to AD or revert to normal and
that HOAs were still cognitively intact. This protocol included the Mini-
Mental State Examination (MMSE), the Repeatable Battery for the
Assessment of Neuropsychological Status (RBANS), the Wechsler Test of
Adult Reading (WTAR), the Trail Making Tests A and B (Trails-A and
Trails-B), and the Emory Version of the Wisconsin Card Sorting Test
(EWCST). Table 2 reports means and standard deviations of neu-
ropsychological test results for both groups, providing a good clinical
indicator of disease severity in this cohort. In order to minimize

Table 1
Demographics.

Age (years) Education (years) Gender Race

aMCI (n= 43) 71.77 ± 7.23 (55–88) 16.12 ± 2.75 21 F, 22 M 24 W, 16 B, 3 L
HOA (n= 33) 69.52 ± 7.73 (59–86) 16.61 ± 1.94 29 F, 4 M 23 W, 10 B

Data are expressed as mean ± standard deviation (range). No significant between-group differences in age (p=0.186) and education (p=0.468) were found (two-
tailed). One individual's gender was not reported. W=white, B= black, L= latinx. This table represents demographics for the aMCI group excluding the individual
who was excluded due to excessive movement.

E.K. Brenner et al. International Journal of Psychophysiology 130 (2018) 63–72

64



comparisons, we chose five tests for further analyses: the RBANS Lan-
guage Index Score, RBANS Delayed Memory Index Score, and the
Perseverative Errors, Set Loss Errors, and Total Categories Sorted from
the EWCST. The RBANS Language Index Score was chosen because a
language deficit is an early sign of AD (Caccappolo-Van Vliet et al.,
2003; Lukatela et al., 1998; Martin and Fedio, 1983; Williams et al.,
1989). Furthermore, the RBANS Delayed Memory Index Score was
chosen for analyses due to the amnestic nature of the MCI subtype of
participants. We also examined two of the error measures from the
EWCST due to their sensitivity to executive deficits in the MCI and AD
populations (Bondi et al., 1993; Nagahama et al., 2003). Lastly, we
examined the total number of categories completed, as Bondi and col-
leagues found it to be the strongest discriminative subtest for patients
with AD (1993).

2.3. MRI parameters

All scans were conducted on one of two Siemens Trio 3T MRI
scanner machines using a 12-channel head coil. Both machines were
used for the Alzheimer's Disease Neuroimaging Initiative (ADNI) and
were designed to be interchangeable. Data from all HOA participants
and three participants with aMCI were collected on one scanner, while
data for the remainder of the individuals with aMCI were collected on
the second scanner. High-resolution anatomical images were taken
using a three-dimensional magnetization-prepared rapid acquisition
with gradient echo (MPRAGE) sequence (repetition time
(TR)= 2300ms, echo time (TE)= 3.0ms, inversion time= 1100ms,
flip angle (FA)= 8°). This led to 176 sagittal slices of 1mm thickness
(field of view (FOV)=256mm, in-plane resolution=1×1mm, in-
plane matrix= 256×256). BOLD contrast T2*-weighted functional
images were obtained using single-shot, gradient-recalled, echo-planar
imaging (EPI) sequences with the following parameters: TR 2000ms,
TE 30ms, FOV 220mm, FA 90°. 29 axial slices of 4mm thickness were
each obtained with an in-plane resolution of 3.4× 3.4mm2 and an in-
plane matrix of 64×64.

2.4. fMRI data preprocessing

A time series of 210 volumes of data was collected during an 8-

minute rest period. In order to control for signal instability, the first five
volumes were removed for each subject, leaving 205 volumes. All
preprocessing steps were conducted in SPM8 (www.fil.ion.ucl.ac.uk/
spm/software/spm8/). Next, all volumes were slice-time corrected and
realigned in SPM8. Using the ArtRepair toolbox, spike artifacts were
removed based on a 17-point moving average of unfiltered data. High-
pass filtering was avoided to allow for examination of the ratio of high-
to low-frequency oscillations in the BOLD signal during independent
component analysis (ICA). Each subject's high-resolution
(1×1×1mm) T1 image was coregistered to the mean functional
image in SPM8. This coregistered image was then segmented in SPM8,
resulting in a normalized, gray matter image in MNI space. The func-
tional images were normalized to the MNI space and these normalized
images along with the gray matter image were resliced into voxel di-
mensions of 3×3×3mm. Smoothing was completed using a Gaussian
filter (full width kernel at half maximum 6mm), in order to improve the
signal-to-noise ratio and reduce ringing artifacts (Lindquist, 2008).
Head motion correction was conducted using the ArtRepair toolbox.
ArtRepair detected one individual with aMCI who displayed head mo-
tion in> 20% of their total volumes (~30%). Although analyses with
and without this individual were not significantly different, their data
was removed after the ICA step. Percent of volumes repaired for par-
ticipants with aMCI (M=4.34; SD=7.74) and HOAs (M=0.40;
SD=0.01) were in the acceptable range.

2.5. Analytic approach and pipeline

2.5.1. Whole-brain mask
A whole brain mask was created using images from all participants,

regardless of group. We resliced the segmented white matter, gray
matter, and CSF masks using SPM8. These were then mapped onto the
average smoothed, normalized functional image for each subject. The
resliced masks were summed and then binarized using the fMRIB
Software Library (FSL; http://fsl.fmrib.ox.ac.uk). As described later, we
analyzed coordinates that peaked in gray matter, consistent with our
questions about connectivity.

2.5.2. Independent component analysis (ICA)
After data were preprocessed, the GIFT toolbox (www.mialab.mrn.

org/software/gift) was used to organize both groups together into
spatially independent components using group-level specific ICA. We
used a high model order of 100 components using the whole-brain mask
in order to ensure whole-brain parcellation (Allen et al., 2014). 100
components have been used in the literature, with certain groups dis-
cussing the advantage of a relatively high order model (Abou-Elseoud
et al., 2010; Kiviniemi et al., 2009; Smith et al., 2009). The in-
vestigators sought to track the most robust and reliable regions within
large subnetworks and anticipated that ICA would provide reliable
network estimation, as discussed by Calhoun and colleagues (2009).

Two investigators, E.K.B. and F.G.H., independently examined the
components outputted from the GIFT toolbox. Components were chosen
taking into account the following criteria: a high ratio of low-frequency
to high-frequency fluctuations, lack of spatial fragmentation, minimal
spatial overlap with CSF, and peak connectivity in gray matter (Cordes
et al., 2000; Allen et al., 2014). Each investigator first chose the com-
ponents separately, and then components in which there was a dis-
agreement were discussed until consensus was reached. This selection
process resulted in 46 useable components for dynamic connectivity
analyses (Fig. I). Lastly, to identify component labels, peak coordinates
were mapped onto the Harvard-Oxford atlas within FSL (Desikan et al.,
2006; Smith et al., 2004; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The
peak coordinates were identified based on the peak of distribution.
Based on these labels as well as functional network labels assigned by
the GIFT toolbox, components were sorted into one of six networks: the
auditory network (AUD), the cognitive control network (CC), the basal
ganglia network (BG), the visual network (VIS), the motor network

Table 2
Raw scores of neuropsychological performance of aMCI and HOA groups.

aMCI (n= 43) HOA (n= 33)

MMSE* 28.20 ± 1.98 29.39 ± 0.97
WTAR-FSIQ 109.52 ± 13.32 (77–125) 109.52 ± 9.21 (86–122)
RBANS ImMem* 86.71 ± 15.59 108.00 ± 10.08
RBANS VisCon 97.19 ± 16.58 102.09 ± 14.02
RBANS Lang* 91.26 ± 17.03 104.06 ± 11.33
RBANS Attn* 97.71 ± 14.30 106.06 ± 14.79
RBANS DelMem* 82.43 ± 18.24 104.76 ± 11.59
RBANS Total* 88.50 ± 12.04 106.79 ± 11.66
Trails-A 48.22 ± 10.49 49.64 ± 9.70
Trails-B 49.40 ± 11.32 51.36 ± 10.02
EWCST InStrat 2.63 ± 0.63 2.81 ± 0.40
EWCST TotSort* 3.68 ± 1.80 4.66 ± 1.33
EWCST TotErr* 17.93 ± 10.22 13.00 ± 4.72
EWCST PersErr* 5.75 ± 6.94 2.22 ± 2.88
EWCST SLErr 1.31 ± 1.66 1.31 ± 1.47

Data are expressed as mean ± standard deviation (range). A ‘*’ indicates sig-
nificant between-group differences, p < 0.05 (two-tailed).
“ImMem”=Immediate Memory, “VisCon”=Visual Construction,
“Lang”=Language, “Attn”=Attention, “DelMem”=Delayed Memory,
“Total”=Total Score, “InStrat”=Initial Strategies, “TotSort”=Total Number
of Categories Sorted, “TotErr”=Total Errors, “PersErr”=Total Perseverative
Errors, “SLErr”=Total Set Loss Errors. This table represents demographics for
the aMCI group excluding the individual who was excluded due to excessive
movement.
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(MOT), and the default mode network (DMN).

2.5.3. Dynamic network analysis
Using the subject-wise static maps created in the initial ICA step, we

used the dynamic functional network connectivity (dFNC) toolbox in
GIFT to examine the dynamic nature of resting state connectivity for all
subjects. All 46 components were de-trended for each subject, and a
low-pass filter at a high-frequency cutoff of 0.15 Hz was used. dFNC was
calculated using the “sliding window” approach, with a window step
size of 15 volumes (30 s), which allows for sampling overlapping win-
dows of time during the time series. Previous work has shown little
effect on dynamic connectivity when varying window sizes between
30 s and 2min (Chang and Glover, 2010; Hutchison et al., 2013). Each
session contained 205 volumes per subject, resulting in time courses of
410 s (TR=2 s) each. Using an L1 regularization, a window step size of
15 volumes (30 s) was implemented. The L1 regularization step is
adapted from Allen and colleagues (2014). Because of the diminished
variance represented in smaller windows, a precision matrix (inverse
covariance) is used. The L1 regularization operates as a loss function
that is minimized to avoid overfitting the data and to encourage net-
work sparsity while providing the most robust estimate of the covar-
iance matrix (Allen et al., 2014). The dFNC windows resulting from the
above process were then clustered using a k-means algorithm (Lloyd,

1982), and Euclidean distance was used to cluster the data into five
states. A k-means value of five was chosen because it was the largest
value where no state was attended by only a single subject, and we had
interest in maximizing states, even with risk of cluster heterogeneity. Of
these five states, four were chosen for analysis due to their proportion
of time spent in each state (> 10%) across all subjects (i.e., participants
spent time in these brain states for> 10% of the duration of the time
series). This resulted in metrics such as proportion of time spent in each
state as well as number of state transitions (Allen et al., 2014). Time
spent in each state was calculated across all subjects, despite the fact
that not all participants entered each state. Therefore, if an individual
did not enter a state, their proportion of time spent there was included
in analyses as 0.

2.5.4. Graph theory metrics and analysis
In our dynamic analyses, we examined the costs of various hubs

during particular states using graph theory. The following is a con-
ceptual explanation of those calculations.

In graph theory, a node is defined as a brain region or region of
interest (ROI). The connection, or edge, is the functional relationship
between two nodes. The degree of a node is the number of connections
coming out of it. We wanted to take into account not only the number of
connections nodes had to each other, but also their strengths. Thus, we

Fig. I. This figure illustrates the output of the ICA, which resulted in 46 usable components. These components were sorted into the six networks shown in this figure.
The bar to the right of each network illustrates different component numbers, which can also be examined in Fig. II. “AUD”=Auditory Network, “CC”=Cognitive
Control Network, “BG”=Basal Ganglia Network, “VIS”=Visual Network, “MOT”=Motor Network, “DMN”=Default Mode Network.
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looked at weighted degree, the strength of the relationship, or Pearson
correlation, for a corresponding pair of nodes. In a weighted graph, the
degree of a node is the sum of the weights of all the node's edges. By
summing the weights of edges within a network, we calculate the net-
work strength. Thus, a hub can be thought of as a node with high degree
or high centrality.

Our definition of network cost is based on the assumption that con-
nections between ROIs that are physically farther away from each other
in the graph are more metabolically expensive than connections be-
tween ROIs a shorter distance apart (Liang et al., 2013). In this calcu-
lation, we defined the cost of each edge as the product of the Euclidean
distance between the pair of ROIs that it connects and the absolute
weight of that connection (Roy et al., 2017). Using this definition, nodal
cost is the sum of all edge costs, where the cost of each edge is the
product of Euclidean distance by the correlation value. For network
cost, the cost of every edge is aggregated for the entire network. In
doing so, this definition of cost takes into account connection strength,
Euclidean distance within the graph, and number of connections. The
goal was to determine network nodes showing the highest and lowest
cost when comparing the MCI group to the HOA sample.

2.5.5. Network and behavioral analysis
To determine the relationship between measures of network dy-

namics and cognitive functioning, we conducted first-order Pearson
correlations. In order to reduce the number of comparisons, we ex-
amined the relationship between dynamic neural network measures
and cognitive functioning on five pre-selected tests: the RBANS
Language Index Score, RBANS Delayed Memory Index Score, and the
Perseverative Errors, Set Loss Errors, and Total Categories Sorted from
the EWCST. The reasons for choosing these tests were discussed above
in the Behavioral data section. Correlational analyses were conducted
between these five cognitive tests and two levels of network analysis: 1)
state-level data based upon between-group differences, and 2) regional
connectivity of areas determined to be hyper- and hypo-connected.
Bonferroni statistical corrections for multiple comparisons were made
within each of these sub-analyses.

3. Results

3.1. Analysis plan

An important emphasis in the analytic plan was to focus on within-
group metrics describing functional network change and the role of
critical hubs in driving the most occupied brain states in individuals
with aMCI. Thus, we rely sparingly on between-group comparisons and
only to provide context.

3.2. Spatial extent of components and adjacency matrices for states

Fig. II displays the adjacency matrix for each state, including a vi-
sualization of all components, and Fig. III depicts the correlation matrix
of positive and negative connections for each state.

3.3. Proportion of time spent and transitions

Analysis examining five network states revealed that states 2, 3, 4,
and 5 were the states where subjects in both groups spent a consider-
able proportion of their time (each>10% of duration of rest, for both
populations, see Table 3). State 1 was omitted from further analysis due
to its low proportion of time spent by the aMCI group (< 10%). Within-
group one-sample t-tests revealed that participants with aMCI spent a
high amount of their time in state 4 (M=46.2%, SD=0.35). In fact,
the aMCI group spent significantly more time in state 4 than in state 2 (t
(42)= 4.23, p < 0.001, d=1.09), state 3 (t(42)= 5.06, p < 0.001,
d=1.24), or state 5 (t(42)= 3.46, p < 0.01, d=0.90) (Table 3).
These findings remained significant after correcting for multiple

comparisons using a Bonferroni correction, p < 0.013. In the HOA
group, state 2 was the most commonly attended state (M=26.8%;
SD=0.030) (Table 3). One-sample t-tests showed that time spent in
state 2 for HOAs was not significantly different from time spent in state
3 (t(32)= 0.99, p=0.332, d=0.27), state 4 (t(32)= 0.41, p=0.684,
d=0.11), or state 5 (t(32)= 0.80, p=0.428, d=0.23) (Table 3). As
such, the aMCI group spent much more of their time concentrated in
one state, while the HOA group spent similar durations of time among
all states. Interestingly this finding did not translate to differences in
transitions; the aMCI and HOA groups did not differ significantly in the
number of between-state transitions, (t(72)= 0.13, p=0.897,
d=0.03).

In order to test the robustness of the findings with respect to tran-
sitions and proportion of time spent (including single-state dominance
in the aMCI sample), we examined these parameters across a range of k-
cluster values. The pattern where individuals with aMCI spent much
more of their time concentrated in one state while the HOA group spent
their time more equally across states was observed regardless of the
assigned k-means cluster value (Fig. IV and Appendix A). The finding
that there was no significant difference in number of transitions be-
tween groups was also consistent regardless of k-cluster value
(Appendix B). Therefore, we anticipate that the selection of k=5 did
not influence the findings. Given that state 4 was the most common
state in the aMCI group, we focused additional analyses on this state.

When examining cost, the cost of posterior DMN and CC regions
during state 4 was significantly lower for the MCI group than in state 2
(t(8)= 11.38, p < 0.001, d=1.97), state 3 (t(8)= 6.27, p=0.0002,
d=1.94), and state 5 (t(8)= 7.38, p < 0.001, d=2.16) (Fig. V). This
held true following correction for multiple comparisons using a Bon-
ferroni correction, p < 0.013. This may indicate that the MCI group
gravitates toward a low-cost state, at least in certain key posterior DMN
regions (e.g., PCC).

3.4. State proportion of time spent and performance

In individuals with aMCI, the proportion of time spent in state 4, the
most dominant network state, did not predict cognitive function.
Therefore, we explored how the proportion of time spent in the most
dominant state relative to higher cost states predicted cognition. To do
so, we examined the relationship between the ratio of time spent in
state 4 (the most common state) and state 2 to cognitive function using
a Pearson's correlation. We chose state 2 because, as Fig. V illustrates,
state 2 was the most costly state when examining posterior DMN and
CC network components; the same held true when examining the
average costs of anterior and posterior DMN and CC network compo-
nents. The ratio of time spent in state 2 to time spent in state 4
(SD=2.08; range= 0.02–7.79) was not significantly associated with
cognitive performance.

Since state 3 showed the second-highest posterior cost in the aMCI
group, and its cost was also significantly higher than that of state 4, (t
(8)= 6.27, p=0.0002, d=1.94), we then used a Pearson's correlation
to examine whether the ratio of time spent in state 3 to state 4
(SD=2.73; range=0.18–8.82), was significantly associated with
performance. Results showed that the proportion of time spent in state
3 to state 4 was significantly positively associated with performance on
the RBANS Language index, (p=0.034, R2= 0.41). This proportion
was also significantly negatively associated with the number of perse-
verative errors on the EWCST (p=0.015, R2=0.54) (Table 4). Thus, a
higher proportion of time spent by aMCI participants in state 3 relative
to the most dominant state (state 4) was associated with enhanced
performance.

We further examined the relationship between proportion of time
spent in state 5 to state 4 and performance on the RBANS Language
index and EWCST Perseverative Errors in order to determine if this
effect was specific to the time spent in state 3 relative to state 4. These
two relationships were exclusive to the proportion of time spent in state
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3 relative to state 4.
In an additional exploratory analysis, we examined whether the two

relationships between performance and proportion of time spent in
state 3 relative to state 4 were present in the HOA group using Pearson's
correlations. These analyses yielded null results for the RBANS
Language composite, (p=0.250, R2=0.18), but a significant re-
lationship with EWCST Perseverative Errors was present, (p=0.002,
R2=0.76).

3.5. Overall network hubs and dominant state

In order to examine the role of network hubs in facilitating the
proportion of time spent in various states, we examined the most costly
nodes in state 4, the state with the highest proportion of time spent in
the aMCI group. To test the hypotheses regarding posterior dis-
connection in critical subnetworks including the DMN and CC network,
we focused on the most costly and least costly nodes. These were de-
fined as the nodes with a cost 1.5 standard deviations above and below
the mean aMCI component cost, respectively. Analyses revealed that
cost in these sets of nodes did not correlate significantly with the pro-
portion of time spent in state 4. Therefore, the most commonly attended
state in the aMCI group did not appear to be driven by the most highly
connected anterior or posterior regions.

3.6. Posterior hubs and behavior

For this within-group analysis, we focused on posterior hubs and
anti-hubs in state 4 when examining correlations between hubs and
behavior. This was driven both by the dominant nature of state 4 in this
group as well as the aforementioned posterior dropout in the MCI lit-
erature. A hub or anti-hub was defined as a component with a cost one
standard deviation above or below the average posterior component
cost for the aMCI group, respectively; in other words, an anti-hub in-
dicated a region that was disconnected relative to all other posterior
components. This revealed two posterior hubs and one posterior anti-
hub. Cost in these areas did not predict behavior.

4. Discussion

The primary goal of this study was to examine the dynamic brain
states arising in individuals with aMCI and to determine if these states
served as predictors of cognitive outcome. The primary findings reveal
that participants with aMCI reliably demonstrated brain dynamics
characterized by a single state dominating nearly half of the rest-period
activity (state 4) and a second, less frequently attended state char-
acterized by relatively higher network cost (state 3). We focused ad-
ditional analyses on these two network states, including their ratios to
one another and how these brain dynamics predicted behavior. Finally,

Fig. II. This figure demonstrates the connectivity profile of each analyzed state, including a visualization of all components used. Component numbers are identical to
those used in Fig. I. “AUD”=Auditory Network, “CC”=Cognitive Control Network, “BG”=Basal Ganglia Network, “VIS”=Visual Network, “MOT”=Motor
Network, “DMN”=Default Mode Network.
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it was a goal to examine the role that network hubs played in driving
brain states. Interestingly, however, the findings did not support the
hypothesis that network hubs would function as “drivers” of proportion
of time spent in states and predictors of cognitive outcome. These
findings are integrated with a broader literature below.

4.1. State proportion of time spent

Our results yielded four dominant network states that were included
in initial analyses. State 4 was the most commonly attended state in the
aMCI group, as individuals spent significantly more time there than any
other state. This pattern was not evident in the HOA sample, which saw
relatively even distribution across four common brain states.

Although there is minimal literature on network variability within
the MCI population, diminished network variability has been observed
after TBI (Nenadovic et al., 2008; Gilbert et al., 2018). Additionally,

variability in brain signaling has been linked to greater cognitive re-
covery in individuals who sustained a TBI (Beharelle et al., 2012). An
analysis of cost in the posterior areas of the DMN and CC network de-
monstrated that state 4, which the MCI group heavily attended, ex-
hibited significantly lower cost than other states. Diminished con-
nectivity in neural networks has been widely observed in MCI (Bai
et al., 2012; Binnewijzend et al., 2012; Rombouts et al., 2005). Overall,
the network stability seen in the aMCI group is consistent with changes
seen in other forms of neurological injury and portends a poor cognitive
outcome.

We anticipated that the relative inflexibility for the aMCI sample to
move from state 4 (most common state) to the intermittent occurrence
of a significantly more costly state had consequences for cognition, so
we first examined the ratio of time spent in state 2 relative to state 4, as
state 2 was the state with the highest cost. The relative proportion of
time spent in state 2 to that spent in state 4 did not have an association

Fig. III. This figure depicts the correlation matrix of positive and negative connections for each analyzed state. “AUD”=Auditory Network, “CC”=Cognitive
Control Network, “BG”=Basal Ganglia Network, “VIS”=Visual Network, “MOT”=Motor Network, “DMN”=Default Mode Network.

Table 3
Proportion of time spent and number of transitions.

State 2 State 3 State 4 State 5 Transitions

aMCI 0.147 ± 0.218 0.112 ± 0.201 0.462 ± 0.347* 0.182 ± 0.273 3.93 ± 2.88
HOA 0.263 ± 0.303 0.186 ± 0.269 0.228 ± 0.324 0.194 ± 0.314 3.85 ± 2.56

Data are expressed as mean ± standard deviation. The first four columns (State X) indicate the proportion of time spent in the respective state. The last column
indicates the number of average transitions participants made between states. A ‘*’ indicates a state that was occupied significantly more by a group when compared
to the group's occupation of other states, p < 0.05 (two-tailed).
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with cognitive performance. We therefore conducted these analyses in
the state with the second-highest cost, state 3. Results showed that the
ratio of the proportion of time spent in state 3 relative to state 4 sig-
nificantly predicted a measure of language that included verbal fluency
and picture naming. This ratio also had a strong relationship, accom-
panied by a strong effect size, with cognitive perseveration, which has
been linked to mild AD (Bondi et al., 1993). This indicates that
spending more time in state 3 relative to state 4 may signal the main-
tenance of language and less perseveration. These findings overall de-
monstrate that a higher proportion of time spent in state 3 may be an
indicator of fewer cognitive deficits. State 3 was a state whose posterior
cost was significantly greater than that of state 4, where individuals

with aMCI spent the vast majority of their time. Although it is presently
unclear what sets state 3 apart from states 2 and 5, spending time in
state 3 relative to state 4 may indicate the possible engagement of re-
sidual resources during early disease progression. This was also true in
the HOA population, where spending more time in state 3 relative to
state 4 indicated less perseveration. In the current sample, individuals
with aMCI spending more time in state 3 relative to state 4 showed
fewer cognitive deficits, possibly by exploiting (at least transiently) a
state with high posterior connectivity. Even so, these findings demon-
strate that the relationship between brain state dynamics and measures
of cognitive performance may not be entirely straightforward.

With respect to the meaning of the enhanced response observed in
state 3, increased regional brain response commonly observed during
goal directed behavior in neurological disorders, and even during
normal aging, has historically been interpreted as neural compensation
(Hillary et al., 2006; Dennis and Cabeza, 2008) or scaffolding (Park and
Reuter-Lorenz, 2009). More recently, this finding has been extended to
studies of network dynamics (Bernier et al., 2017; Medaglia, 2017).
Based upon this explanation, the posterior connectivity loss observed in
the MCI literature would be bolstered by greater anterior connectivity
representing enhanced support via cognitive control (Hillary et al.,
2006). One important observation counter to a compensatory ex-
planation is that increased connectivity in the anterior hub, (e.g.,
frontal pole), was significantly correlated (p < 0.05) with connectivity
in posterior hubs (e.g., angular gyrus, supramarginal gyrus), indicating
a positive coupling as opposed to an accommodation in frontal systems
for posterior connectivity loss. This finding is important and requires
additional investigation including into the relationship between pos-
terior and anterior hubs as neurodegeneration advances (Jones et al.,
2016).

4.2. Whole brain hubs as drivers of brain states

There is a growing literature focused on the modular structure of
brain networks with significant emphasis on the role of network hubs in
facilitating subnetwork functioning and information transfer (van den
Heuvel and Sporns, 2013). In order to investigate the role of network
hubs as drivers of brain states, we determined the most costly nodes in
state 4 for the aMCI group and examined these highly connected nodes
in the context of proportion of time spent and cognitive outcome. The
current data do not support regional hub response as a determinant of
the proportion of time spent in state 4. This finding was surprising and

Fig. IV. This figure illustrates the proportion of time spent in the most dominant state for each k-means cluster value, for each of the two groups.

Fig. V. Examining only components in the DMN and CC network, this figure
shows the average cost of posterior components.

Table 4
Proportion of time spent (ratios) and cognitive performance in aMCI.

Ratio Measure p-Value R2

P3/P4 RBANS DelMem 0.201 0.17
P3/P4 RBANS Lang 0.034* 0.41
P3/P4 WCST PersErr 0.015* 0.54
P3/P4 WCST SLErr 0.356 0.11
P3/P4 WCST TotSort 0.361 0.12

For measures of error, higher scores are indicative of worse performance. A “*”
indicates statistical significance of p < 0.05 (two-tailed). “P3”=proportion of
time spent in state 3. “P4”=proportion of time spent in state 4.
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may be due to the nature of estimating dynamic states, where the role
of any individual node is likely de-emphasized in favor of capturing the
spatio-temporal fluctuations in the collective network response.
Second, this finding could reflect the general diffusion of connectivity
response across nodes in aging, which reduces the impact of individual
nodes on a network; certainly there is some support of this in the
healthy aging literature (Cabeza and Dennis, 2012). In order to in-
vestigate the connection between posterior dropout and performance
more closely, we calculated posterior hubs and anti-hubs in state 4 for
the aMCI group. However, cost in these hubs and anti-hubs also did not
predict cognitive performance.

4.3. Limitations

There are a few limitations to this study. First, data from all HOAs
were collected on one scanner and data from all but three of the par-
ticipants with aMCI were collected on a separate scanner, which may
introduce scanner-dependent group differences. However, the scanners
were designed to be interchangeable with all of the same hardware and
software and also underwent validation procedures as part of ADNI. We
cannot rule out the possibility that the few between-group analyses
were affected by the different scanners; however, our primary analyses
were within-group and are therefore uncompromised. Also, there were
no significant differences in average state costs in participants with
aMCI whose data were collected on separate scanners. Future studies
with a larger sample could replicate and extend our findings by dis-
tinguishing distinct stages of MCI (e.g., early vs. late), perhaps in con-
junction with amyloid imaging. Finally, recent work has suggested that
autoregressive models, not state-based models, may better explain dy-
namic connectivity (Liegeois et al., 2017). Future work should consider
autoregressive models as an alternative strategy for estimating dynamic
connectivity in clinical samples.

4.4. Conclusions and future research

The current study used dynamic functional connectivity to examine
the distinct brain states that differentiate individuals with aMCI from
their HOA counterparts. Connectivity analyses revealed that individuals
with aMCI were more likely to spend time in a single dominant state, a
finding that is consistent with the diminished network dynamics ob-
served in other neurological disorders (Beharelle et al., 2012) and may
be attributable to reduced flexibility in resource allocation. This result
was independent of the assigned value of k used for the k-means clus-
tering algorithm (Appendix A). Future research will focus on loss of
neural network dynamics as a marker for conversion to AD. Further-
more, the finding that spending more time in a costly state relative to
the most common state tends to mitigate language and perseveration
deficits may provide insights into those transient states that permit
preserved cognitive functioning as the disease progresses. This is
especially promising given the fact that state 3 exhibited significantly
higher posterior cost than state 4 in the aMCI group, and MCI and AD
are marked by a loss in posterior connectivity (Damoiseaux et al., 2012;
Hillary et al., 2015; Sheline and Raichle, 2013; Tijms et al., 2013).
Given that a language deficit is an early sign of developing AD, future
research should investigate whether these state-behavior relationships
can be reliably observed in MCI as well as the implications that pre-
servation of these states has for conversion to AD.
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